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ON THE NUMBER SPECTRUM OF MUON 

BUNDLES UNDERGROUND
*
  

 

 
 A simple model of hadronic cascade in the atmosphere is suggested to calculate expected number 

of muons above a given energy threshold as a function of primary energy. The result shows the power law 

number spectrum for high multiplicities of  muons   (m > 3)  with  the  exponent  = - (3.0  3.3) not 

depending  on  depth  and  primary  composition. For m < 3 the number spectrum is affected by atomic 

number of primaries, by depth, and also by the size of the detector if the latter is not big enough. 

 

 

 Introduction 

 

 The application of big underground detectors for investigation of  muon bundles 

promises an interesting information concerning high energy phenomena in cosmic rays. 

If the size of the detector a is bigger than the lateral spread of the bundle  r , then the 

total number of muons associated with an event can be measured, not a small and 

unknown portion like in most cases formerly. The Utah detector and now KGF and 

Baksan detectors partly approach the condition a >> r . In this case one can expect a 

strong correlation between the number of muons and primary energy, like in EAS. Also 

there is a hope to obtain a useful information on pion and kaon production, transverse 

momenta and primary composition. 

 The calculation of muon bundle characteristics, assuming as known all 

elementary processes involved, seems to be a very complicated procedure and generally 

can be performed only by Monte-Carlo method. Nevertheless, the analytical approach 

based on a simple model could be useful to look at the principal features of the 

phenomenon in a qualitative way. 

 That kind of analysis was made by Koshiba and Totsuka [1] using a postulate 

that multiplicity distribution of muon parents for a given energy threshold obeys a power 

law. 

 In the present paper a modification of above mentioned approach is suggested 

which differs from [1] by the following:  

 

 1) A definite model of hadronic cascade is introduced.  

 

 2) In this model the continuous quantity - the expected number of muon parents 

is used. Correspondingly, the  binominal distribution in [1] is replaced by the 

Poissonian. 

 

 3) The dependence on primary atomic number A is estimated.  

 

 4) The case  a << r  and  a ~ r  occurred to be more complicated than [1].   

 

A model of hadronic cascade. (“Quasi scaling model”) 

 

                                                 
*
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 To describe the number of pions generated in the cascade from primary nucleon 

of energy E0 , it is naturally to satisfy two conditions : 

 1)  For   E < E0   scaling   in   fragmentation    region   demands N (>E) = 

F(E/E);   

 2) For  E << E0  and E0 big enough one can assume, like in EAS,  N E
 0  , 

where  = 0.7 - 0.8. The power law in conventional model can be realized only if pions 

take part in the cascade. Then   
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where   is an effective multiplicity in N-interaction,  2/3 is the ratio of charged pions 

to all pions. Thus deviation of   from unity depends on leakage of hadronic cascade 

energy into neutral pions. 

 To fit both conditions the "quasi scaling" function F(E/E)  for E/E << 1  

should be   
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Then the energy spectrum and number of muons are: 
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where  B/(B+E)  is the effective decay probability of pions and kaons, y=E0/B, and  E  

is the muon threshold energy. In this particular scheme the constant C can be obtained 

by direct comparison of single muon spectrum and primary spectrum. Below for 

numerical estimates C = 0.1 and  B = 100 GeV will be used (vertical direction, pions 

only). 

 

Muon number spectrum J(m,E) when a >> r  

 

 Neglecting specific fluctuations in cascade development let us take the 

probability to observe m muons, when expected value is N(y),  as a Poisson distribution. 

Then 
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where S is the area of a detector.  

 N(y) is taken from (1) and f1(y) is primary spectrum;     

 

                                       f y D B y1

1( )                               (3) 

 

The solution can be simplified if instead of (1) one takes its asymptotic approximation 
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and change variable in (2)  

                                

J m E S e
N

m
f N dN

f N D B Cf N

N
m

N

( , )
!

( ) ;

( ) ( ) .


















   



















 

 2

2

1

0

1

              (5) 

 

In this approximation the real behaviour of f2 , when N  0 is replaced by a cut-off of 

the power spectrum if N < N0 
*)

 .  

 To determine N0 let us require that the total flux of muons through S per sec 

from (5) should be the same as from (1) and (3).  
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Performing the integration we obtain: 
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Dividing J by the total muon flux K we have finally:  

                                                 
*)

 This "N0-approximation” in principle shifts some events from m = 1 to m = 2 thus overestimating the 

probability of pairs, which becomes significant for N0 > 0.1. 
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Thus, the number spectrum depends on two parameters:   and N0 .  
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Fig. 1 

 

For m > 3 the shape of the spectrum does not practically depend on N0  

asympotically following a power law:   
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In this case there is a strong correlation between m and N, also between m  and   E0 . For  

m = 1  and  m = 2  a broad interval of primary energies is involved. The ratio of high 

multiplicity rate to the total one has  a  linear  dependence on  N0 decreasing when  E  

increases. 
 Now  as  a  numerical  example   let us  take    (also C = 0.1 ; B = 10

2
 

GeV/c). In this case:   

J m E

K E
N E W N W e

N

m
dNm m

N

N

m( , )

( )
( ) ( );

!
.




   




0 0

3

0

           (8) 

 

Fig. 1 shows the deformation of the power law due to Poisson fluctuations and 

enhancement of  J(1)/K  and  J(2)/K  when  E  increases. 

 

Number spectrum from primaries with atomic number A 

 
 Supposing superposition model the previous result can be easily generalized to 
the case when primaries consist of particles with definite A.  The only change is, that the 
parameter  N0  in formulae (7) and (8) should be replaced by a new one:  
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Fig. 2 shows the A-dependence of the ratio of multiple rate to total muon  flux. For big 

m there is a linear rise with A.  It should be specified that N0 -approximation is correct 

only if N0 << 1, also 
~
N 0 << 1, which is not valid when  E/A < B .  This affects  the  

results for  m = 2, (1),  and slightly m = 3. So the absolute value of J(m)/K for m > 3 in 

principle can be used as a best measure of average atomic number of primaries. 

 

Muon number spectrum when a << r  and  a ~ r  

 

 This case (a practical one) is more complicated for calculations and obviously 

less informative, because the lateral distribitlon of muons should be assumed.  It is 

natural to expect, that  the maximum size of the bundle  
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Fig. 2 

 

r ~ 1/E , but there should be also a structure of a smaller size because of the presence 

of muons with E >> E in the bundle. The existence of the pole in lateral structure is 

proved also by decoherence curve from [2,3]  which seems to have no flattening at small 

distances. 

 Let us take the lateral distribution of muons with a given energy E in the form  
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where x is the distance from the axis; H is effective height of production; p p
t1
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is mean transverse momentum of pions).  
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 lntegrating (x) over the muon energy spectrum (1) and normalizing to one 

muon we get lateral distribution function of the bundle:  
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where as in “N0-approximation” the upper limit of the integral  
E

B

0
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approximation makes (x) independent of E0 and N. Then the part of the bundle 

( )

 

N

N
 which happens to be inside detector is obtained by integrating over detector 
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where  

 corresponds to the axis of the bundle, 


b  to the point inside detector.  

 Now we get the new density spectrum  S f N  2( )   simply replacing in (5) N 
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Here S is the area of a detector,   S d2 



  some ficticious area  S S . We 

have the same power law approximations as (5), (6) with only difference that  N0  

should be replaced by a smaller quantity N0  :    
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To get numerical results it is necessary to perform integrations (11), (12), and (13). The 

last ones will be simplier if detector is a circle. Fig. 3 shows an example for a circle 

detector, radius a = 1 m. Lateral spread parameter   is   chosen  r E = 1 m x 1 TeV   

which   corresponds    to   p1 = 0.1  GeV/c  and H = 10 km. Others parameters same as in 

Fig. 1. The relative rate of multiple events has a maximum at E = 1.6 TeV which 

corresponds to r a  07. . The dotted lines represent the case a >> r . The 

experimental points from [4] ( S = 4 m
2
 ) are also plotted. It would be prematurely to 

make conclusions from this comparison before adjusting constants involved, primary 

composition and analysis of other data. But one remark could be made. The authors of 

[4] interpreted the last point (the biggest depth) as to be lower than expected from 

extrapolation and thus confirming the proposed increase in lateral spread. One can see 

from fig. 3 that situation is rather opposite, and this particular point seems to be higher 
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than expected. The fit could be made by rising the effective atomic number or prompt 

mechanism of muon production. 
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Conclusions 

 

 Many features of muon bundles number spectrum obtained here are quite similar 

to that of Totsuka and Koshiba. The use of “quasi-scaling” model provides a more 

definite analysis of low multiplicity rate. Actually more realistic quasi-scaling function 

than (1) can be easily taken into account by adjusting constant C by Monte Carlo 

method or by fitting C to experimental data. 

 Also for m = 2 the calculations can be carried out with better validity directly 

using eq. (1), (2) without  “N0-approximation” . 

 In the case  a << r  the pole in the muon lateral structure was found to be 

important. The “attraction of cores” to detector centre increases the ratio of multiple 

events significantly, for a/r ~ 1 by an order of magnitude. 

 

Acknowledgments  

 

 The author wish to thank professor S. Miyake for kind hospitality during his stay 

at the Institute where this work was carried out. The stimulating discussion with 

professor M. Koshiba is appreciated. 

 

 

References 

 

1. Y. Totsuka and M. Koshiba, J. Phys. Soc. Japan, vol. 56, No 2, 

   p. 341 (1974). 

2.  H. E. Bergeson et al., Proc. of 14th lnt. Cosmic Ray Conf., Muenchen, 



 8 

   1975, vol. 6, p. 2055. 

3. G. H. Lowe et al., Proc. of 14th lnt. Cosmic Ray Conf., Muenchen, 1975, 

   vol. 6, p. 2061. 

4. M. R. Krishnaswami et al., Proc. of 15th Int. Cosmic Ray Conf., Plovdiv,  

   1977, vol. 6, p. 161.  

    

 

 


